Ритца и Галёркина методы - определение. Что такое Ритца и Галёркина методы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ритца и Галёркина методы - определение

Методы диагностики и коррекции внимания
Найдено результатов: 6319
Ритца и Галёркина методы      

широко распространённые Прямые методы решения главным образом вариационных задач и краевых задач математического анализа (см. Краевые задачи, Вариационное исчисление).

Метод Ритца применяется большей частью для приближённого решения вариационных задач и тех краевых задач, которые сводятся к вариационным. Пусть задан Функционал V [y (x)] (или более сложный функционал) и требуется найти такую функцию у (х), принимающую в точках x0 и xi заданные значения α = у (х0) и β = у (х1), на которой функционал V [y (x)] будет достигать Экстремума. Значения исследуемого на экстремум функционала V [y (x)] рассматриваются не на всех допустимых в данной задаче функциях у (х), а лишь на всевозможных линейных комбинациях вида

с постоянными коэффициентами ai, составленных из n первых функций некоторой выбранной системы φ1(x), φ2(х),..., φп (х),... (от удачного выбора этой системы функций зависит эффективность применения метода к решению конкретных задач). Необходимым условием выбора системы функций φ1(х) является требование, чтобы функции уп (х) удовлетворяли условиям уп (хо) = α и yn (x1) = α для всех значений параметров a1. При таком выборе функций уп (х) функционал V [y (x)] превращается в функцию Ф (а1, a2,..., an) коэффициентов ai, последние выбирают так, чтобы эта функция достигала экстремума, т. е. определяют их из системы уравнений

(i=1, 2, ..., n).

Например, пусть требуется решить задачу о минимуме интеграла

при условии y (0) = y (1) = 0. В качестве функций φi (x) можно взять xi (1 - х), тогда

.

Если n = 2, то . Для определения коэффициентов a1 и a2 получаем после вычислений два уравнения

;

.

Решением этих уравнений являются числа a1 = 71/369 и a2 = 7/41. Следовательно, . Полученное приближённое решение отличается от точного на величину порядка 0,001.

Найденное этим методом приближённое решение уп (х) вариационной задачи при некоторых условиях, касающихся в основном полноты системы функций φi (x), стремится к точному решению у (х), когда n → ∞.

Метод был предложен в 1908 немецким математиком В. Ритцем (W. Ritz). Теоретическое обоснование метода дано сов. математиком Н. М. Крыловым (1918).

Метод Галёркина является широким обобщением метода Ритца и применяется главным образом для приближённого решения вариационных и краевых задач, в том числе и тех, которые не сводятся к вариационным. Основная идея метода Галёркина состоит в следующем. Пусть требуется в некоторой области D найти решение дифференциального уравнения

L [u] = 0 (1)

(L - некоторый дифференциальный оператор, например по двум переменным), удовлетворяющее на границе S области D однородным краевым условиям:

u = 0. (2)

Если функция u является решением уравнения (1) в области D, то функция L [u] тождественно равна нулю в этой области и, следовательно, ортогональна (см. Ортогональность) любой функции в области D. Приближённое решение уравнения (1) ищут в виде

, (3)

где ψi (x, y) (i = 1, 2,..., n) - линейно независимые функции, удовлетворяющие краевым условиям (2) и являющиеся первыми n функциями некоторой системы функций ψ1(x, у), ψ2(х, у),..., ψп (х, у),..., полной в данной области. Постоянные коэффициенты ai выбирают так, чтобы функция L [un] была ортогональна в D первым n функциям системы ψi (x, y):

(4)

(i=1, 2, ..., n).

Например, пусть в области D требуется решить уравнение Пуассона

при условии u = 0 на S. Выбирая систему функций ψi (x, y), ищем решение в виде (3). Система уравнений (4) для определения коэффициентов ai имеет вид:

(i=1, 2, ..., n).

Функции ψi (x, y) можно, в частности, выбирать, пользуясь следующими соображениями. Пусть ω(x, y) - непрерывная функция, имеющая внутри области D непрерывные частные производные второго порядка и такая, что ω(x, y) > 0 внутри D, ω(x, y) = 0 на S. Тогда в качестве системы функций ψi (x, y) можно взять систему, составленную из произведений ω(x, y) на различные степени х и y: , , , , ... Например, если границей области D является окружность S радиуса R с центром в начале координат, то можно положить ω(x, y) = R2 - x2 - y2.

Метод Галёркина применяется при решении широкого класса задач; более общая его формулировка даётся в терминах функционального анализа (См. Функциональный анализ) для решения уравнений вида Au - f = 0, где А - линейный оператор, определённый на линеале, плотном в некотором гильбертовом пространстве H, u - искомый и f - заданный элементы пространства H.

Метод получил распространение после исследований Б. Г. Галёркина (1915); ранее (1913) он применялся для решения конкретных задач теории упругости И. Г. Бубновым, в связи с чем иногда именуется методом Бубнова - Галёркина. Теоретическое обоснование метода принадлежит М. В. Келдышу (1942).

Лит.: Галёркин Б. Г., Стержни и пластинки. Ряды в некоторых вопросах упругого равновесия стержней и пластинок, "Вестник инженеров", 1915, т. 1, № 19, с. 897-908; Михлин С. Г., Вариационные методы в математической физике, 2 изд., М. - Л., 1970; Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. - М., 1962; Ritz W., Neue Methode zur Lösung gewisser Randwertaufgaben, "Gesellschaft der Wissenschaften zu Göttingen. Math.-physik. Klasse. Nachrichten", Göttingen, 1908; его же, Über еще neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, "Journal für die reine und angewandte Mathematik", 1909, Bd 135.

В. Г. Карманов.

Метод Галёркина         
МЕТОД ПРИБЛИЖЁННОГО РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ
Метод Галеркина; Метод Бубнова — Галёркина; Метод Бубнова — Галеркина; Метод Бубнова-Галёркина; Метод Бубнова-Галеркина; Бубнова — Галёркина метод; Метод Галёркина — Петрова
Метод Галёркина (метод Бубнова — Галёркина) — метод приближённого решения краевой задачи для дифференциального уравнения L[u]=f(x). Здесь оператор L[\cdot] может содержать частные или полные производные искомой функции.
Разделения методы         

в аналитической химии, совокупность операций, применяемых с целью обнаружения и количественного определения какого-либо элемента (вещества) в сложном по составу анализируемом материале. Р. м. необходимы, поскольку большинство аналитических методов недостаточно избирательны. При разделении ионов элементов используют групповые реагенты, позволяющие упростить трудноразрешимую задачу анализа сложных смесей. Для разделения применяют осаждение (см. Осаждения способ), экстракцию (См. Экстракция), хроматографию (См. Хроматография), дистилляцию (См. Дистилляция), а также др. способы.

Методы разделения         
Способы разделения смесей (в аналитической химии) — важнейшие аналитические операции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), то есть обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы.
серология         
НАУКА О СВОЙСТВАХ СЫВОРОТКИ КРОВИ
Серологические методы
ж.
Научная дисциплина, изучающая свойства сыворотки крови животных и людей.
Серология         
НАУКА О СВОЙСТВАХ СЫВОРОТКИ КРОВИ
Серологические методы
(от лат. serum - сыворотка и ...Логия)

буквально учение о свойствах сыворотки крови; обычно под С. понимают раздел иммунологии, изучающий взаимодействие антител (См. Антитела) сыворотки с антигенами (См. Антигены). Серологические реакции могут быть прямыми (двухкомпонентными) - Агглютинация, пассивная Гемагглютинация, Преципитация и др., и косвенными (трёхкомпонентными) - реакция нейтрализации (например, микроба), реакция торможения гемагглютинации. Из нескольких "простых" складываются сложные серологические реакции: Бактериолиз, реакция связывания комплемента и др. Распространены также иммунофлюоресцентные методы, основанные на окраске антител (антигенов) флюорохромами. Особый вид серологических реакций - выявление иммобилизации подвижных форм микроорганизмов (например, реакция иммобилизации бледных трепонем при сифилисе). Некоторые серологические исследования проводят не в пробирке, а непосредственно в организме экспериментальных животных (вводят им иммунную сыворотку в серийных разведениях и летальную дозу микробов).

Серологические реакции применяют в научных и диагностических (см. Серодиагностика) целях в инфекционной и неинфекционной иммунологии: их используют, например, при переливании крови, для определения групп крови, установления видовой и индивидуальной специфичности белков. Серологические исследования применяют также в эпидемиологии и эпизоотологии для выявления источника инфекции, путей её передачи, Иммунитета у людей и животных, эффективности вакцинации и т. п. Реакция между антигенами и антителами лежит в основе серопрофилактики (См. Серопрофилактика) и серотерапии (См. Серотерапия). Среди основных задач С. - разработка методов получения высокоспецифических диагностических и лечебных сывороток, оценка их активности и выяснение механизма действия. См. Иммунология.

Лит..: Резникова Л. С., Эпштейн-Литвак Р. В., Леви М. И., Серологические методы исследования при диагностике инфекционных болезней, М., 1962; Handbook of experimental immunology, Oxf., 1967.

В. И. Покровский, В. А. Годованный.

СЕРОЛОГИЯ         
НАУКА О СВОЙСТВАХ СЫВОРОТКИ КРОВИ
Серологические методы
наука, изучающая физико-химические реакции сыворотки крови животных или человека. (Сывороткой называют жидкую часть крови, не содержащую клеток и фибриногена - белка, участвующего в свертывании крови.) Предметом серологии служат обычно реакции между антигенами и антителами. Антигенами называют вещества, которые воспринимаются организмом как чужеродные: обычно это высокомолекулярные соединения, сложные белки. Инъекции чужеродных белков (инокуляции) в организм человека или животного вызывают образование специфических антител. Антитела представляют собой модифицированные молекулы глобулинов; они появляются в крови инокулированных животных во время или после серии инокуляций.
Все бактерии и все вирусы имеют в своем составе те или иные антигены. Бактерии и вирусы, размножающиеся в теле животного и вызывающие заболевания, вызывают и образование антител, которые могут быть идентифицированы в сывороке крови больного на основе реакций с известными антигенами, что дает возможность распознать болезнь, т.е. поставить диагноз. И наоборот, использование известных антител часто позволяет идентифицировать неизвестные бактерии или вирусы. См. также БАКТЕРИИ
; ИММУНИТЕТ
.
СЕРОЛОГИЯ         
НАУКА О СВОЙСТВАХ СЫВОРОТКИ КРОВИ
Серологические методы
и, мн. нет, ж. мед.
Раздел иммунологии, изучающий кровяную сыворотку и методы, связанные с применением иммун-ных сывороток.
СЕРОЛОГИЯ         
НАУКА О СВОЙСТВАХ СЫВОРОТКИ КРОВИ
Серологические методы
(от лат. serum - сыворотка и ...логия), раздел иммунологии, изучающий реакции антигена (микроба, вируса, чужеродного белка) с антителами вне организма.
серология         
НАУКА О СВОЙСТВАХ СЫВОРОТКИ КРОВИ
Серологические методы
СЕРОЛ'ОГИЯ [сэ], серологии, мн. нет, ·жен. (от ·лат. serum - сыворотка и ·греч. logos - учение) (физиол.). Наука, изучающая свойство серума, сыворотки крови или лимфы.

Википедия

Психофизиологические методы диагностики и коррекции внимания

Психофизиологические методы диагностики и коррекции внимания являются одними из достоверных способов, так как регистрируемые физиологические показатели позволяют анализировать активность мозга, скрытую от прямого наблюдения. Основными методами регистрации физиологических процессов являются электрофизиологические методы. В физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы, и поэтому являются надежными, универсальными и точными показателями течения любых физиологических процессов.